A Framework for Differential Calculus on Persistence Barcodes
نویسندگان
چکیده
Abstract We define notions of differentiability for maps from and to the space persistence barcodes. Inspired by theory diffeological spaces, proposed framework uses lifts ordered barcodes, which derivatives can be computed. The two derived (respectively, barcodes) combine together naturally produce a chain rule that enables use gradient descent objective functions factoring through illustrate versatility this showing how it used analyze smoothness various parametrized families filtrations arising in topological data analysis.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A New Differential Calculus on Noncommutative Spaces
We develop a GL qp (2) invariant differential calculus on a two-dimensional noncommutative quantum space. Here the coordinate space for the exterior quantum plane is spanned by the differentials that are commutative (bosonic) in nature.
متن کاملa framework for identifying and prioritizing factors affecting customers’ online shopping behavior in iran
the purpose of this study is identifying effective factors which make customers shop online in iran and investigating the importance of discovered factors in online customers’ decision. in the identifying phase, to discover the factors affecting online shopping behavior of customers in iran, the derived reference model summarizing antecedents of online shopping proposed by change et al. was us...
15 صفحه اولA primer on exterior differential calculus
A pedagogical application-oriented introduction to the calculus of exterior differential forms on differential manifolds is presented. Stokes’ theorem, the Lie derivative, linear connections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their traditional vector counterparts. In pa...
متن کاملDifferential calculus on graphon space
Recently, the theory of dense graph limits has received attention from multiple disciplines including graph theory, computer science, statistical physics, probability, statistics, and group theory. In this paper we initiate the study of the general structure of differentiable graphon parameters F . We derive consistency conditions among the higher Gâteaux derivatives of F when restricted to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Foundations of Computational Mathematics
سال: 2021
ISSN: ['1615-3383', '1615-3375']
DOI: https://doi.org/10.1007/s10208-021-09522-y